
HDL Coder™

Getting Started Guide

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

HDL Coder™ Getting Started Guide
© COPYRIGHT 2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2012 Online only New for Version 3.0 (Release 2012a)
September 2012 Online only Revised for Version 3.1 (Release 2012b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started with HDL Coder

1
Product Description . 1-2
Key Features . 1-2

Installation . 1-3

Toolbox Setup . 1-4
VHDL and Verilog Language Support 1-4
Setting Up the C/C++ Compiler . 1-4
Supported Third-Party Synthesis Tools 1-5
Setting Up the Synthesis Tool Path 1-5
Xilinx System Generator Setup . 1-7
Xilinx FPGA Target-Specific Floating Point Library
Setup . 1-7

Software Requirements for Examples 1-8

Tutorials

2
HDL Code Generation from a MATLAB Algorithm 2-2
About the Algorithm in This Example 2-2
Copying Files Locally . 2-4
Setting Up Your C Compiler . 2-4
Checking Your Synthesis Tool Setup 2-5
Testing the Original MATLAB Algorithm 2-5
Setting Up an HDL Coder Project . 2-6
Creating Fixed-Point Versions of the Algorithm and Test
Bench . 2-9

Generating HDL Code . 2-15

HDL Code Generation from a Simulink Model 2-18
Before You Generate Code . 2-18

iii

Overview of Exercises . 2-19
The sfir_fixed Model . 2-19
Generating HDL Code Using the Command Line
Interface . 2-22

Generating HDL Code Using the GUI 2-30
Simulating and Verifying Generated HDL Code 2-41

Examples

A
Generating HDL Code Using the Command Line
Interface . A-2

Generating HDL Code Using the GUI A-3

Verifying Generated HDLCode in anHDL Simulator . . A-4

Index

iv Contents

1

Getting Started with HDL
Coder

• “Product Description” on page 1-2

• “Installation” on page 1-3

• “Toolbox Setup” on page 1-4

1 Getting Started with HDL Coder™

Product Description
Generate VHDL® and Verilog® code for FPGA and ASIC designs

HDL Coder™ generates portable, synthesizable VHDL and Verilog code
from MATLAB® functions, Simulink® models, and Stateflow® charts. The
generated HDL code can be used for FPGA programming or ASIC prototyping
and design.

HDL Coder provides a workflow advisor that automates the programming
of Xilinx® and Altera® FPGAs. You can control HDL architecture and
implementation, highlight critical paths, and generate hardware resource
utilization estimates. HDL Coder provides traceability between your
Simulink model and the generated HDL code, enabling code verification for
high-integrity applications adhering to DO-254 and other standards.

Key Features

• Target-independent, synthesizable VHDL and Verilog code

• Code generation support for MATLAB functions, System objects and
Simulink blocks

• Mealy and Moore finite-state machines and control logic implementations
using Stateflow

• Workflow advisor for programming Xilinx and Altera application boards

• Resource sharing and retiming for area-speed tradeoffs

• Code-to-model and model-to-code traceability for DO-254

• Legacy code integration

1-2

Installation

Installation
For instructions on installing MathWorks® products, see the MATLAB
installation documentation. If you have installed MATLAB and want to see
which other MathWorks products are installed, in the MATLAB Command
Window, enter ver.

1-3

1 Getting Started with HDL Coder™

Toolbox Setup

In this section...

“VHDL and Verilog Language Support” on page 1-4

“Setting Up the C/C++ Compiler” on page 1-4

“Supported Third-Party Synthesis Tools” on page 1-5

“Setting Up the Synthesis Tool Path” on page 1-5

“Xilinx System Generator Setup” on page 1-7

“Xilinx FPGA Target-Specific Floating Point Library Setup” on page 1-7

“Software Requirements for Examples” on page 1-8

VHDL and Verilog Language Support
The generated HDL code complies with the following standards:

• VHDL-1993 (IEEE® 1076-1993) or later

• Verilog-2001 (IEEE 1364-2001) or later

Setting Up the C/C++ Compiler
Before using HDL Coder, you must set up your C/C++ compiler by running
the mex -setup command, as described in the documentation for mex in the
MATLAB Function Reference. You must run this command even if you use
the default C compiler that comes with the MATLAB product for Microsoft®

Windows® platforms. You can also use mex to choose and configure a different
C/C++ compiler, as described in “Build MEX-Files”, in the MATLAB External
Interfaces documentation.

For a list of supported compilers, see at
http://www.mathworks.com/support/compilers/current_release/.

Note The LCC compiler is not supported in the current
release. Please use one of the other compilers in the list at
http://www.mathworks.com/support/compilers/current_release/.

1-4

Toolbox Setup

Supported Third-Party Synthesis Tools
For FPGA-in-the-Loop or Customization for USRP® Device using the HDL
Workflow Advisor, a supported synthesis tool must be installed, and the
synthesis tool executable must be on the system path.

The HDL Workflow Advisor is tested with the following third-party FPGA
synthesis tools:

• Xilinx ISE 13.1

• Altera Quartus II 11.0

• Xilinx ISE 10.1 is supported only for compatibility with Speedgoat FPGA
target devices.

Speedgoat IO301, IO303, and IO311 FPGA IO boards, which use Xilinx
Virtex-II FPGAs, are tested with Xilinx ISE version 10.1. Before you select
one of these Speedgoat devices in the HDL Workflow Advisor, make sure
that you have installed Xilinx ISE 10.1. See also “xPC Target™ Interface
Generation for Speedgoat Boards” for more information.

Setting Up the Synthesis Tool Path
If you plan to use HDL Coder with one of the supported third-party FPGA
synthesis tools, you need to add the tools to your system path using
hdlsetuptoolpath.

The syntax and operation of hdlsetuptoolpath are as follows:

hdlsetuptoolpath ('ToolName', TOOLNAME, 'ToolPath', TOOLPATH)

The input name-value pairs are:

• 'ToolName', ['Xilinx ISE' | 'Altera Quartus II']: specify the
synthesis tool name.

• 'ToolPath','path': specify the full path to the synthesis tool executable.

For example, the following command sets the synthesis tool path to point to
an installed Xilinx ISE 13.1 executable.

hdlsetuptoolpath('ToolName','Xilinx ISE', ...
'ToolPath', 'C:\Xilinx\13.1\ISE_DS\ISE\bin\nt64\ise.exe');

1-5

1 Getting Started with HDL Coder™

If you have an icon for the tool on your Windows desktop, you can find the
tool path:

1 Right-click the icon and select Properties.

2 Click the Shortcut tab.

To check your Xilinx ISE synthesis tool setup, try launching the tool with
the following command:

!ise

To check your Altera Quartus synthesis tool setup, try launching the tool
with the following command:

!quartus

Tip hdlsetuptoolpath changes the system path and system environment
variables for the current MATLAB session only. To execute hdlsetuptoolpath
automatically when MATLAB starts, add hdlsetuptoolpath to your
startup.m script.

Synthesis Tool Setup for the MATLAB to HDL Workflow
To permanently add a synthesis tool to your path:

1 Add the synthesis tool directory to your system path using setenv.

2 Close MATLAB.

3 Reopen MATLAB.

To add a synthesis tool to your path for the current MATLAB session:

1 Close open projects, including any docked or undocked windows related to
your HDL Code Generation from MATLAB project.

2 Close MATLAB.

3 Reopen MATLAB.

1-6

Toolbox Setup

4 Use hdlsetuptoolpath to add the synthesis tool.

Xilinx System Generator Setup
To generate ModelSim® simulation scripts for a design containing Xilinx
System Generator blocks, you must:

• Have compiled Xilinx simulation libraries.

• Specify the path to your compiled libraries.

Required Libraries
You must have the following compiled Xilinx simulation libraries for your
EDA simulator and target language to generate ModelSim simulation scripts:

• unisim

• simprim

• xilinxcorelib

Refer to the Xilinx documentation for compxlib to learn how to compile these
libraries.

Specify Path to Required Libraries
Specify the path to your compiled Xilinx simulation libraries by setting the
XilinxSimulatorLibPath parameter for your DUT.

For example, you can use hdlset_param to set XilinxSimulatorLibPath:

myDUT = gcb;
libpath = '/apps/Xilinx_ISE/XilinxISE-13.4/Linux/ISE_DS/ISE/vhdl/

mti_se/6.6a/lin64/xilinxcorelib';
hdlset_param (myDUT, 'XilinxSimulatorLibPath', libpath);

Xilinx FPGA Target-Specific Floating Point Library
Setup
To map your floating-point design to a Xilinx floating-point library, you must:

• Use Xilinx LogiCORE IP Floating-Point Operator v5.0.

1-7

1 Getting Started with HDL Coder™

• Have the compiled xilinxcorelib simulation library for your EDA
simulator and target language.

Refer to the Xilinx documentation for compxlib to learn how to compile
this library.

• Specify the path to your compiled Xilinx simulation libraries by setting the
XilinxSimulatorLibPath parameter for your DUT.

For example, you can use hdlset_param to set XilinxSimulatorLibPath:

myDUT = gcb;
libpath = '/apps/Xilinx_ISE/XilinxISE-13.4/Linux/ISE_DS/ISE/vhdl/

mti_se/6.6a/lin64/xilinxcorelib';
hdlset_param (myDUT, 'XilinxSimulatorLibPath', libpath);

Software Requirements for Examples
To operate some examples shipped with this release, the following related
products are required:

• DSP System Toolbox™

• Filter Design HDL Coder™

• HDL Verifier™

• Communications System Toolbox™ (required to use Viterbi Decoder
example)

• Image Processing Toolbox™ (required to use Image Reconstruction
examples)

1-8

2

Tutorials

• “HDL Code Generation from a MATLAB Algorithm” on page 2-2

• “HDL Code Generation from a Simulink Model” on page 2-18

2 Tutorials

HDL Code Generation from a MATLAB Algorithm

In this section...

“About the Algorithm in This Example” on page 2-2

“Copying Files Locally” on page 2-4

“Setting Up Your C Compiler” on page 2-4

“Checking Your Synthesis Tool Setup” on page 2-5

“Testing the Original MATLAB Algorithm” on page 2-5

“Setting Up an HDL Coder Project” on page 2-6

“Creating Fixed-Point Versions of the Algorithm and Test Bench” on page
2-9

“Generating HDL Code” on page 2-15

About the Algorithm in This Example
For the purpose of this example, you generate and synthesize HDL code for
a MATLAB algorithm that implements a simple filter. However, you can
use HDL Coder to generate HDL code from MATLAB algorithms for many
applications.

This tutorial uses these files:

• mlhdlc_sfir.m — Simple filter function from which you generate HDL
code.

• mlhdlc_sfir_tb.m — Test bench that the HDL Coder project uses to
exercise the filter using a representative input range.

mlhdlc_sfir Function Code
The following code provides the complete mlhdlc_sfir function definition.

%#codegen

function [y_out, delayed_xout] = mlhdlc_sfir(x_in, h_in1, h_in2, h_in3, h_in4)

% Symmetric FIR Filter

2-2

HDL Code Generation from a MATLAB® Algorithm

persistent ud1 ud2 ud3 ud4 ud5 ud6 ud7 ud8;

if isempty(ud1)

ud1 = 0; ud2 = 0; ud3 = 0; ud4 = 0; ud5 = 0; ud6 = 0; ud7 = 0; ud8 = 0;

end

a1 = ud1 + ud8; a2 = ud2 + ud7;

a3 = ud3 + ud6; a4 = ud4 + ud5;

m1 = h_in1 * a1; m2 = h_in2 * a2;

m3 = h_in3 * a3; m4 = h_in4 * a4;

a5 = m1 + m2; a6 = m3 + m4;

% filtered output

y_out = a5 + a6;

% delayout input signal

delayed_xout = ud8;

% update the delay line

ud8 = ud7;

ud7 = ud6;

ud6 = ud5;

ud5 = ud4;

ud4 = ud3;

ud3 = ud2;

ud2 = ud1;

ud1 = x_in;

end

mlhdlc_sfir_tb.m Test Bench
The mlhdlc_sfir_tb test bench creates an input signal and calls the
mlhdlc_sfir filter, passing in the input data.

clear all;

% input signal with noise

x_in = cos(2.*pi.*(0:0.001:2).*(1+(0:0.001:2).*75)).';

2-3

2 Tutorials

% filter coefficients

h1 = -0.1339; h2 = -0.0838; h3 = 0.2026; h4 = 0.4064;

len = length(x_in);

y_out = zeros(1,len);

x_out = zeros(1,len);

for ii=1:len

data = x_in(ii);

% call to the design 'mlhdlc_sfir' that is targeted for hardware

[y_out(ii), x_out(ii)] = mlhdlc_sfir(data, h1, h2, h3, h4);

end

figure('Name', [mfilename, '_plot']);

subplot(2,1,1); plot(1:len,x_in);

subplot(2,1,2); plot(1:len,y_out);

Copying Files Locally
Before you begin generating code, set up a working folder and copy the
tutorial files to this folder.

1 Start MATLAB.

2 Create a folder named filter_sfir, for example:

mkdir filter_sfir

The folder must not be within the MATLAB directory structure. You must
be able to write to this folder.

3 Copy the tutorial files, mlhdlc_sfir.m and mlhdlc_sfir_tb.m, to this
folder.

Setting Up Your C Compiler
Before using HDL Coder to generate HDL code, you must set up your C
compiler.

2-4

HDL Code Generation from a MATLAB® Algorithm

Note If your installation does not include a default compiler, for a
list of supported compilers for the current release of MATLAB, see at
http://www.mathworks.com/support/compilers/current_release/. Install a
compiler that is suitable for your platform.

To set up the installed compiler:

1 At the MATLAB command line, enter:

mex -setup

2 Enter y to see the list of installed compilers.

3 Select a supported compiler.

4 Enter y to verify your choice.

Checking Your Synthesis Tool Setup
Before using HDL Coder to synthesize HDL code, you must set up your
synthesis tool path.

To check your Xilinx ISE synthesis tool setup, try launching the tool with
the following command:

!ise

To check your Altera Quartus synthesis tool setup, try launching the tool
with the following command:

!quartus

If the tool does not open, or opens the wrong version, see “Setting Up the
Synthesis Tool Path” on page 1-5.

Testing the Original MATLAB Algorithm
Before generating HDL code for this MATLAB algorithm, simulate your
MATLAB design to verify that it runs, and to provide a baseline for
comparison with the generated HDL code.

2-5

2 Tutorials

1 Make the filter_sfir folder your working folder, for example:

cd filter_sfir

2 Run the test bench. At the MATLAB command line, enter:

mlhdlc_sfir_tb

The test bench runs and plots the input signal and the filtered output.

Setting Up an HDL Coder Project

1 On the Apps tab, on the far right of the Apps section, click the arrow .

2-6

HDL Code Generation from a MATLAB® Algorithm

2 Under Code Generation, click HDL Coder.

3 Enter mydesign for the project name.

HDL Coder creates the project, mydesign.prj, in the local working folder,
and opens the project in the right side of the MATLAB workspace.

2-7

2 Tutorials

4 Under MATLAB Function, click Add MATLAB function.

5 In the Add Files dialog box, select mlhdlc_sfir.m and click Open.

2-8

HDL Code Generation from a MATLAB® Algorithm

HDL Coder adds the file to the project.

6 Under MATLAB Test Bench, click Add MATLAB test bench.

7 In the Add Files dialog box, select mlhdlc_sfir_tb.m and click Open.

HDL Coder adds the test bench file to the project.

You are now ready to convert the code from floating-point to fixed-point.

Creating Fixed-Point Versions of the Algorithm and
Test Bench

1 In the project, at the bottom of the pane, click the Workflow Advisor
button to open the HDL Coder Workflow Advisor.

2 On the Build tab, click the Advisor button.

3 In the Workflow Advisor left pane, the Float to Fixed Workflow folder is
open by default.

2-9

2 Tutorials

In this tutorial, run each task in this folder individually.

a Select the Verify Floating-Point Design task and click Run.

This task verifies that the floating-point algorithm is suitable for code
generation by generating a MEX function. It then runs the generated
MEX function to check for run-time errors.

The Workflow Advisor generates a build log. If the log contains errors,
the Workflow Advisor provides a link to the code generation report.

b Select the Propose Fixed-Point Types task and click Run.

The advisor displays the Basic Settings tab.

By default, HDL Coder proposes fraction lengths for the specified word
length that generate no overflows for the specified input range.

When proposing fraction lengths for floating-point data types, HDL
Coder uses the Default Word Length. In this tutorial, the Default
Word Length is 14. The advisor provides a default Safety Margin for
Simulation Min/Max of 4%. The advisor adjusts the range of the data
by this safety factor. For example, a value of 4 specifies that you want a
range of at least 4 percent larger.

2-10

HDL Code Generation from a MATLAB® Algorithm

The task runs and the software proposes fixed-point data types for each
variable in the MATLAB code.

The advisor provides the following information for each variable under
Proposed fixed-point types for variables, in the Basic Settings
tab. You can manually modify the information.

Column
Heading

Description

Min Simulation minimum value. If you edit this value,
the Workflow Advisor uses the new value as the
design minimum for this variable.

Max Simulation maximum value. If you edit this value,
the Workflow Advisor uses the new value as the
design maximum for this variable.

2-11

2 Tutorials

Column
Heading

Description

Int The Workflow Advisor checks this box for
variables that were pure integers during
simulation.

ProposedType The proposed fixed-point data type for this
variable based on simulation data. To override a
proposed data type, select the type and enter a
new value.

RoundMode The rounding mode used in the simulation. To
propose data types for a different rounding mode,
change this setting in the results table. From the
dropdown list, selecting a new mode and then
rerun the task.

OverflowMode Whether the OverflowMode was wrap or
saturate during simulation. To propose data
types for a different overflow mode, change this
setting in the results table. From the dropdown
list, selecting a new mode and then rerun the task.

c Click Show Types Report to view the instrumentation results in a
report.

d Select and run Generate Fixed-Point Code.

This task generates fixed-point MATLAB code for the
mlhdlc_sfir function, mlhdlc_sfir_FixPt, and for the test bench,
mlhdlc_sfir_tb_FixPt, using the default fimath, hdlfimath, and the
data types proposed in the previous task.

e Click mlhdlc_sfir_FixPt to see the fixed-point MATLAB code for the
mlhdlc_sfir function.

%#codegen

function [y_out,delayed_xout] = mlhdlc_sfir_FixPt(x_in,h_in1,h_in2,h_in3,h_in4)

fm = hdlfimath;

% Symmetric FIR Filter

persistent ud1 ud2 ud3 ud4 ud5 ud6 ud7 ud8

2-12

HDL Code Generation from a MATLAB® Algorithm

if isempty(ud1)

ud1 = fi(0, 1, 14, 12, fm);

ud2 = fi(0, 1, 14, 12, fm);

ud3 = fi(0, 1, 14, 12, fm);

ud4 = fi(0, 1, 14, 12, fm);

ud5 = fi(0, 1, 14, 12, fm);

ud6 = fi(0, 1, 14, 12, fm);

ud7 = fi(0, 1, 14, 12, fm);

ud8 = fi(0, 1, 14, 12, fm);

end

a1 = fi(ud1 + ud8, 1, 14, 11, fm);

a2 = fi(ud2 + ud7, 1, 14, 11, fm);

a3 = fi(ud3 + ud6, 1, 14, 11, fm);

a4 = fi(ud4 + ud5, 1, 14, 11, fm);

m1 = fi(h_in1*a1, 1, 14, 14, fm);

m2 = fi(h_in2*a2, 1, 14, 15, fm);

m3 = fi(h_in3*a3, 1, 14, 14, fm);

m4 = fi(h_in4*a4, 1, 14, 13, fm);

a5 = fi(m1 + m2, 1, 14, 14, fm);

a6 = fi(m3 + m4, 1, 14, 12, fm);

% filtered output

y_out = fi(a5 + a6, 1, 14, 12, fm);

% delayout input signal

delayed_xout = fi(ud8, 1, 14, 12, fm);

% update the delay line

ud8 = fi(ud7, 1, 14, 12, fm);

ud7 = fi(ud6, 1, 14, 12, fm);

ud6 = fi(ud5, 1, 14, 12, fm);

ud5 = fi(ud4, 1, 14, 12, fm);

ud4 = fi(ud3, 1, 14, 12, fm);

ud3 = fi(ud2, 1, 14, 12, fm);

ud2 = fi(ud1, 1, 14, 12, fm);

ud1 = fi(x_in, 1, 14, 12, fm);

end

f Click mlhdlc_sfir_tb_FixPt to see the fixed-point code for the test
bench.

clear all ;

% input signal with noise

2-13

2 Tutorials

x_in = cos(2 .* pi .* (0:0.001:2) .* (1 + (0:0.001:2) .* 75)).';

% filter coefficients

h1 = -0.1339;

h2 = -0.0838;

h3 = 0.2026;

h4 = 0.4064;

len = length(x_in);

y_out = zeros(1, len);

x_out = zeros(1, len);

for ii = 1:len

data = x_in(ii);

% call to the design 'mlhdlc_sfir' that is targeted for hardware

[y_out(ii),x_out(ii)] = mlhdlc_sfir_wrapper_FixPt(data, h1, h2, h3, h4);

end

figure('Name', [mfilename, '_plot']);

subplot(2, 1, 1);

plot(1:len, x_in);

subplot(2, 1, 2);

plot(1:len, y_out);

g Select and run Verify Fixed-Point Design.

The task runs a fixed-point simulation and plots the results of using
the fixed-point version of the filter. Compare this plot to the plot of the
floating-point results obtained earlier in the Verify Floating-Point
Design step to check that the floating-point and fixed-point algorithms
are functionally equivalent.

Note This task verifies that the generated fixed-point code is
compilable. In the Verify floating-point design task, if you did not
select Accelerate Test Bench for faster simulation, this task might
take a very long time.

2-14

HDL Code Generation from a MATLAB® Algorithm

Generating HDL Code

1 In the HDL Workflow Advisor left pane, in the MATLAB to HDL
Workflow folder, select Code Generation.

Tip You can use the Target, Coding Style, Clocks and Ports, Test
Bench, and Optimizations tabs to set code generation options. For more
information, see the HDL Coder Workflow Advisor reference.

2 On the Target tab, select Generate HDL test bench.

2-15

2 Tutorials

If you want to simulate your design in the next task, you must generate
an HDL test bench.

Note Generate HDL and Generate EDA scripts are already selected
by default.

3 Run the task.

HDL Coder generates VHDL code and provides links to this code and to a
resource utilization report.

4 Select Simulation and Verification.

a On the right pane, select the Simulation tool.

b Run the task.

2-16

HDL Code Generation from a MATLAB® Algorithm

The task simulates the fixed-point design using the selected simulation
tool and generates a compilation report and a simulation report.

5 Select Create Project in the Synthesis and Analysis folder.

a Select Create Project.

b On the Synthesis Tool Selection pane, select a Synthesis tool from
the list.

c Run the task.

This task creates a synthesis project for the HDL code. HDL Coder uses
this project in the next task to synthesize the design.

6 Select and run Run Logic Synthesis.

This task:

• Launches the synthesis tool in the background.

• Opens the synthesis project created in the previous task, compiles HDL
code, synthesizes the design, and emits netlists and related files.

• Generates a synthesis report.

7 Select and run Place and Route.

This task:

• Launches the synthesis tool in the background.

• Runs a Place and Route process that takes the circuit description
produced by the previous mapping process, and emits a circuit
description suitable for programming an FPGA.

• Also emits pre- and post-routing timing information for use in critical
path analysis and back annotation of your source model.

• Displays results.

2-17

2 Tutorials

HDL Code Generation from a Simulink Model

In this section...

“Before You Generate Code” on page 2-18

“Overview of Exercises” on page 2-19

“The sfir_fixed Model” on page 2-19

“Generating HDL Code Using the Command Line Interface” on page 2-22

“Generating HDL Code Using the GUI” on page 2-30

“Simulating and Verifying Generated HDL Code” on page 2-41

Before You Generate Code
The exercises in this introduction use a preconfigured example model.
The blocks in this example model support HDL code generation, and the
parameters of the model itself have been configured properly for HDL code
generation.

After you complete the exercises, you will probably proceed to generating
HDL code from your existing models, or newly constructed models. Before you
generate HDL code from your own models, you should do the following:

• Use the hdllib utility to create a library of blocks that are currently
supported for HDL code generation, as described in “Create a Supported
Blocks Library”. By constructing models with blocks from this library,
your models will be HDL compatible.

The set of supported blocks will change in future releases, so you should
rebuild your supported blocks library each time you install a new version
of this product.

• Use the Run Compatibility Checker option (described in “Selecting
and Checking a Subsystem for HDL Compatibility” on page 2-36) to check
HDL compatibility of your model or DUT and generate an HDL Code
Generation Check Report.

Alternatively, you can invoke the checkhdl function (see checkhdl) to run
the compatibility checker.

2-18

HDL Code Generation from a Simulink® Model

• Before generating code, use the hdlsetup utility (described in “Initializing
Model Parameters with hdlsetup” on page 2-23) to set up your model for
HDL code generation quickly and consistently.

Overview of Exercises
The coder supports HDL code generation in your choice of environments:

• The MATLAB Command Window supports code generation using the
makehdl, makehdltb, and other functions.

• The Simulink GUI (the Model Configuration Parameters dialog box and/or
Model Explorer) provides an integrated view of the model simulation
parameters and HDL code generation parameters and functions.

The hands-on exercises in this chapter introduce you to the mechanics of
generating and simulating HDL code, using the same model to generate code
in both environments. In a series of steps, you will

• Configure a simple model for code generation.

• Generate VHDL code from a subsystem of the model.

• Generate a VHDL test bench and scripts for the Mentor Graphics®

ModelSim simulator to drive a simulation of the model.

• Compile and execute the model and test bench code in the simulator.

• Generate and simulate Verilog code from the same model.

• Check a model for compatibility with the coder.

The sfir_fixed Model
These exercises use the sfir_fixed model as a source for HDL code
generation. The model simulates a symmetric finite impulse response (FIR)
filter algorithm, implemented with fixed-point arithmetic. The following
figure shows the top level of the model.

2-19

2 Tutorials

This model uses a division of labor that is helpful in HDL design:

• The symmetric_fir subsystem, which implements the filter algorithm, is
the device under test (DUT). An HDL entity will be generated, tested, and
eventually synthesized from this subsystem.

• The top-level model components that drive the subsystem work as a test
bench.

The top-level model generates 16-bit fixed-point input signals for the
symmetric_fir subsystem. The Signal From Workspace block generates a
test input (stimulus) signal for the filter. The four Constant blocks provide
filter coefficients.

The Scope blocks are used in simulation only. They are virtual blocks, and
do not generate HDL code.

2-20

HDL Code Generation from a Simulink® Model

The following figure shows the symmetric_fir subsystem.

The fixed-point data types propagate through the subsystem. Inputs inherit
the data types of the signals presented to them. Where required, internal
rules of the blocks determine the output data type, given the input data types
and the operation performed (for example, the Product blocks).

The filter outputs a fixed-point result at the y_out port, and also replicates its
input (after passing it through several delay stages) at the delayed_x_out
port.

In the exercises that follow, you generate VHDL code that implements the
symmetric_fir subsystem as an entity. You then generate a test bench
from the top-level model. The test bench drives the generated entity, for
the required number of clock steps, with stimulus data generated from the
Signal From Workspace block.

2-21

2 Tutorials

Generating HDL Code Using the Command Line
Interface

• “Overview” on page 2-22

• “Creating a Folder and Local Model File” on page 2-22

• “Initializing Model Parameters with hdlsetup” on page 2-23

• “Generating a VHDL Entity from a Subsystem” on page 2-24

• “Generating VHDL Test Bench Code” on page 2-26

• “Verifying Generated Code” on page 2-28

• “Generating a Verilog Module and Test Bench” on page 2-28

Overview
This exercise provides a step-by-step introduction to code and test bench
generation commands, their arguments, and the files created by the code
generator. The exercise assumes that you have familiarized yourself with the
example model (see “The sfir_fixed Model” on page 2-19).

Creating a Folder and Local Model File
Make a local copy of the example model and store it in a working folder, as
follows.

1 Start the MATLAB software.

2 Create a folder named sl_hdlcoder_work, for example:

mkdir C:\work\sl_hdlcoder_work

The sl_hdlcoder_work folder will store a local copy of the example model
and to store folders and code generated by the coder. The location of the
folder does not matter, except that it should not be within the MATLAB
tree.

3 Make the sl_hdlcoder_work folder your working folder, for example:

cd C:\work\sl_hdlcoder_work

2-22

HDL Code Generation from a Simulink® Model

4 To open the example model, type the following command at the MATLAB
prompt:

sfir_fixed

5 In Simulink, select File > Save As and save a local copy of the sfir_fixed
model to your working folder.

6 Leave the sfir_fixed model open and proceed to the next section.

Initializing Model Parameters with hdlsetup
Before generating code, you must set some parameters of the model. Rather
than doing this manually, use the hdlsetup command. The hdlsetup
command uses the set_param function to set up models for HDL code
generation quickly and consistently.

To set the model parameters:

1 At the MATLAB command prompt, type

hdlsetup('sfir_fixed')

2 Select Save from the File menu, to save the model with its new settings.

Before continuing with code generation, consider the settings that hdlsetup
applies to the model.

hdlsetup configures the Solver options that are recommended or required by
the coder. These are

• Type: Fixed-step. (The coder currently supports variable-step solvers
under limited conditions. See hdlsetup)

• Solver: Discrete (no continuous states). Other fixed-step solvers
could be selected, but this option is usually the best one for simulating
discrete systems.

• Tasking mode: SingleTasking. The coder does not currently support
models that execute in multitasking mode.

Do not set Tasking mode to Auto.

2-23

2 Tutorials

hdlsetup also configures the model start and stop times and fixed-step size as
follows:

• Start Time: 0.0 s

• Stop Time: 10 s

• Fixed step size (fundamental periodic sample time) : auto

If Fixed step size is set to auto the step size is chosen automatically, based
on the sample times specified in the model. In the example model, only the
Signal From Workspace block specifies an explicit sample time (1 s); the other
blocks inherit this sample time.

The model start and stop times determine the total simulation time. This
in turn determines the size of data arrays that are generated to provide
stimulus and output data for generated test benches. For the example model,
computation of 10 seconds of test data does not take a significant amount of
time. Computation of sample values for more complex models can be time
consuming. In such cases, you may want to decrease the total simulation time.

The remaining parameters set by hdlsetup control error severity levels, data
logging, and model display options. If you want to view the complete set of
model parameters affected by hdlsetup, open hdlsetup.m in the MATLAB
Editor.

The model parameter settings provided by are intended as useful defaults,
but they may not be optimal for your application. For example, hdlsetup sets
a default Simulation stop time of 10 s. A total simulation time of 1000 s
would be more realistic for a test of the sfir_fixed example model. If you
would like to change the simulation time, enter the desired value into the
Simulation stop time field of the Simulink window.

See the “Model Parameters” table in the “Model and Block Parameters”
section of the Simulink documentation for a summary of model parameters.

Generating a VHDL Entity from a Subsystem
In this section, you will use the makehdl function to generate code for a VHDL
entity from the symmetric_fir subsystem of the example model. makehdl
also generates script files for third-party HDL simulation and synthesis tools.

2-24

HDL Code Generation from a Simulink® Model

makehdl lets you specify numerous properties that control various features
of the generated code. In this example, you will use the makehdl property
defaults.

Before generating code, make sure that you have completed the steps
described in “Creating a Folder and Local Model File” on page 2-22 and
“Initializing Model Parameters with hdlsetup” on page 2-23.

To generate code:

1 Select Current Folder from the Desktop menu in the MATLAB window.
This displays the MATLAB Current Folder browser, which lets you easily
access your working folder and the files that will be generated within it.

2 At the MATLAB prompt, type the command

makehdl('sfir_fixed/symmetric_fir')

This command directs the coder to generate code from the symmetric_fir
subsystem within the sfir_fixed model, using default property values.

3 As code generation proceeds, the coder displays progress messages. The
process should complete with the message

HDL Code Generation Complete.

Observe that the names of generated files in the progress messages
are hyperlinked. After code generation completes, you can click these
hyperlinks to view the files in the MATLAB Editor.

makehdl compiles the model before generating code. Depending on model
display options (such as port data types, etc.), the appearance of the model
may change after code generation.

4 By default, makehdl generates VHDL code. Code files and scripts are
written to a target folder. The default target folder is a subfolder of your
working folder, named hdlsrc.

A folder icon for the hdlsrc folder is now visible in the Current Folder
browser. To view generated code and script files, double-click the hdlsrc
folder icon.

2-25

2 Tutorials

5 The files that makehdl has generated in the hdlsrc folder are

• symmetric_fir.vhd: VHDL code. This file contains an entity definition
and RTL architecture implementing the symmetric_fir filter.

• symmetric_fir_compile.do: Mentor Graphics ModelSim compilation
script (vcom command) to compile the generated VHDL code.

• symmetric_fir_synplify.tcl: Synplify® synthesis script

• symmetric_fir_map.txt: Mapping file. This report file maps generated
entities (or modules) to the subsystems that generated them (see “Trace
Code Using the Mapping File”).

6 To view the generated VHDL code in the MATLAB Editor, double-click the
symmetric_fir.vhd file icon in the Current Folder browser.

7 Before proceeding to the next section, close files you have opened in the
editor. Then, click the Go Up One Level button in the Current Folder
browser, to set the current folder back to your sl_hdlcoder_work folder.

8 Leave the sfir_fixed model open and proceed to the next section.

Generating VHDL Test Bench Code
In this section, you use the test bench generation function, makehdltb, to
generate a VHDL test bench. The test bench is designed to drive and verify
the operation of the symmetric_fir entity that was generated in the previous
section. A generated test bench includes

• Stimulus data generated by signal sources connected to the entity under
test.

• Output data generated by the entity under test. During a test bench run,
this data is compared to the outputs of the VHDL model, for verification
purposes.

• Clock, reset, and clock enable inputs to drive the entity under test.

• A component instantiation of the entity under test.

• Code to drive the entity under test and compare its outputs to the expected
data.

2-26

HDL Code Generation from a Simulink® Model

In addition, makehdltb generates Mentor Graphics ModelSim scripts to
compile and execute the test bench.

This exercise assumes that your working folder is the same as that used in
the previous section. This folder now contains an hdlsrc folder containing the
previously generated code.

To generate a test bench:

1 At the MATLAB prompt, type the command

makehdltb('sfir_fixed/symmetric_fir')

This command generates a test bench that is designed to interface to and
validate code generated from symmetric_fir (or from a subsystem with a
functionally identical interface). By default, VHDL test bench code, as well
as scripts, are generated in the hdlsrc target folder.

2 As test bench generation proceeds, the coder displays progress messages.
The process should complete with the message

HDL TestBench Generation Complete.

3 To view generated test bench and script files, double-click the hdlsrc
folder icon in the Current Folder browser. Alternatively, you can click the
hyperlinked names of generated files in the code test bench generation
progress messages.

The files generated by makehdltb are:

• symmetric_fir_tb.vhd: VHDL test bench code and generated test and
output data.

• symmetric_fir_tb_compile.do: Mentor Graphics ModelSim
compilation script (vcom commands). This script compiles and loads both
the entity to be tested (symmetric_fir.vhd) and the test bench code
(symmetric_fir_tb.vhd).

• symmetric_fir_tb_sim.do: Mentor Graphics ModelSim script to
initialize the simulator, set up wave window signal displays, and run a
simulation.

2-27

2 Tutorials

4 If you want to view the generated test bench code in the MATLAB Editor,
double-click the symmetric_fir.vhd file icon in the Current Folder
browser. You may want to study the code while referring to the makehdltb
reference documentation, which describes the default actions of the test
bench generator.

5 Before proceeding to the next section, close files you have opened in the
editor. Then, click the Go Up One Level button in the Current Folder
browser, to set the current folder back to your sl_hdlcoder_work folder.

Verifying Generated Code
You can now take the previously generated code and test bench to an HDL
simulator for simulated execution and verification of results. See “Simulating
and Verifying Generated HDL Code” on page 2-41 for an example of how to
use generated test bench and script files with the Mentor Graphics ModelSim
simulator.

Generating a Verilog Module and Test Bench
The procedures for generating Verilog code differ only slightly from those for
generating VHDL code. This section provides an overview of the command
syntax and the generated files.

Generating a Verilog Module. By default, makehdl generates VHDL
code. To override the default and generate Verilog code, you must pass in
a property/value pair to makehdl, setting the TargetLanguage property to
'verilog', as in this example.

makehdl('sfir_fixed/symmetric_fir','TargetLanguage','verilog')

The previous command generates Verilog source code, as well as scripts for
the simulation and the synthesis tools, in the default target folder, hdlsrc.

The generated files are:

• symmetric_fir.v: Verilog code. This file contains a Verilog module
implementing the symmetric_fir subsystem.

• symmetric_fir_compile.do: Mentor Graphics ModelSim compilation
script (vlog command) to compile the generated Verilog code.

2-28

HDL Code Generation from a Simulink® Model

• symmetric_fir_synplify.tcl: Synplify synthesis script.

• symmetric_fir_map.txt.: Mapping file. This report file maps generated
entities (or modules) to the subsystems that generated them (see “Trace
Code Using the Mapping File”).

Generating and Executing a Verilog Test Bench. The makehdltb syntax
for overriding the target language is exactly the same as that for makehdl.
The following example generates Verilog test bench code to drive the Verilog
module, symmetric_fir, in the default target folder.

makehdltb('sfir_fixed/symmetric_fir','TargetLanguage','verilog')

The generated files are:

• symmetric_fir_tb.v: Verilog test bench code and generated test and
output data.

• symmetric_fir_tb_compile.do: Mentor Graphics ModelSim compilation
script (vlog commands). This script compiles and loads both the entity to be
tested (symmetric_fir.v) and the test bench code (symmetric_fir_tb.v).

• symmetric_fir_tb_sim.do: Mentor Graphics ModelSim script to initialize
the simulator, set up wave window signal displays, and run a simulation.

The following listing shows the commands and responses from a test bench
session using the generated scripts:

ModelSim> do symmetric_fir_tb_compile.do

Model Technology ModelSim SE vlog 6.0 Compiler 2004.08 Aug 19 2004

-- Compiling module symmetric_fir

#

Top level modules:

symmetric_fir

Model Technology ModelSim SE vlog 6.0 Compiler 2004.08 Aug 19 2004

-- Compiling module symmetric_fir_tb

#

Top level modules:

symmetric_fir_tb

ModelSim>do symmetric_fir_tb_sim.do

vsim work.symmetric_fir_tb

2-29

2 Tutorials

Loading work.symmetric_fir_tb

Loading work.symmetric_fir

**** Test Complete. ****

Break at

C:/work/sl_hdlcoder_work/vlog_code/symmetric_fir_tb.v line 142

Simulation Breakpoint:Break at

C:/work/sl_hdlcoder_work/vlog_code/symmetric_fir_tb.v line 142

MACRO ./symmetric_fir_tb_sim.do PAUSED at line 14

Generating HDL Code Using the GUI

• “HDL Coder GUI Overview” on page 2-30

• “Creating a Folder and Local Model File” on page 2-32

• “Viewing Coder Options in the Configuration Parameters Dialog Box” on
page 2-33

• “Initializing Model Parameters with hdlsetup” on page 2-34

• “Selecting and Checking a Subsystem for HDL Compatibility” on page 2-36

• “Generating VHDL Code” on page 2-37

• “Generating VHDL Test Bench Code” on page 2-39

• “Verifying Generated Code” on page 2-41

• “Generating Verilog Model and Test Bench Code” on page 2-41

HDL Coder GUI Overview
You can view and edit options and parameters that affect HDL code generation
in the Model Configuration Parameters dialog box, or in the Model Explorer.

The following figure shows the top-level HDL Code pane in the Model
Configuration Parameters dialog box.

2-30

HDL Code Generation from a Simulink® Model

The following figure shows the top-level HDL Code options pane in the
Model Explorer.

2-31

2 Tutorials

In the code generation exercises that follow, you use the Configuration
Parameters dialog box to view and set the coder options and controls. The
exercises use the sfir_fixed model (see “The sfir_fixed Model” on page 2-19)
in basic code generation and verification steps.

Creating a Folder and Local Model File
In this section you will setup the folder and a local copy of the example model.

Creating a Folder. Start by setting up a working folder:

1 Start MATLAB.

2 Create a folder named sl_hdlcoder_work, for example:

mkdir C:\work\sl_hdlcoder_work

2-32

HDL Code Generation from a Simulink® Model

You will use sl_hdlcoder_work to store a local copy of the example model
and to store folders and code generated by the coder. The location of the
folder does not matter, except that it should not be within the MATLAB
folder tree.

3 Make the sl_hdlcoder_work folder your working folder, for example:

cd C:\work\sl_hdlcoder_work

Making a Local Copy of the Model File. Next, make a copy of the
sfir_fixed model:

1 To open the model, type the following command at the MATLAB prompt:

sfir_fixed

2 Save a local copy of the sfir_fixed model to your working folder.

3 Leave the sfir_fixed model open and proceed to the next section.

Viewing Coder Options in the Configuration Parameters
Dialog Box
The coder option settings are displayed as a category of the model’s active
configuration set. You can view and edit these options in the Configuration
Parameters dialog box, or in the Model Explorer. This discussion uses the
Configuration Parameters dialog box.

To access the coder settings:

1 Open the Model Configuration Parameters dialog box.

2 Select the HDL Code pane.

2-33

2 Tutorials

The HDL Code pane contains top-level options and buttons that control
the HDL code generation process. Several other categories of options are
available under the HDL Code entry. This exercise uses a small subset of
these options, leaving the others at their default settings.

Initializing Model Parameters with hdlsetup
Before generating code, you must set some parameters of the model. Rather
than doing this manually, use the hdlsetup command. The hdlsetup
command uses the set_param function to set up models for HDL code
generation quickly and consistently.

2-34

HDL Code Generation from a Simulink® Model

To set the model parameters:

1 At the MATLAB command prompt, type:

hdlsetup('sfir_fixed')

2 Save the model with its new settings.

Before continuing with code generation, consider the settings that hdlsetup
applies to the model.

hdlsetup configures Solver options that are recommended or required by
the coder. These options are:

• Type: Fixed-step. (The coder currently supports variable-step solvers
under limited conditions. See hdlsetup.)

• Solver: Discrete (no continuous states). Other fixed-step solvers
could be selected, but this option is usually the best one for simulating
discrete systems.

• Tasking mode: SingleTasking. The coder does not currently support
models that execute in multitasking mode.

Do not set Tasking mode to Auto.

hdlsetup also configures the model start and stop times and fixed-step size as
follows:

• Start Time: 0.0 s

• Stop Time: 10 s

• Fixed step size (fundamental periodic sample time): auto

If Fixed step size is set to auto the step size is chosen automatically, based
on the sample times specified in the model. In the example model, only the
Signal From Workspace block specifies an explicit sample time (1 s); the other
blocks inherit this sample time.

The model start and stop times determine the total simulation time. This
in turn determines the size of data arrays that are generated to provide
stimulus and output data for generated test benches. For the example model,

2-35

2 Tutorials

computation of 10 seconds of test data does not take a significant amount of
time. Computation of sample values for more complex models can be time
consuming. In such cases, you may want to decrease the total simulation time.

The remaining parameters set by hdlsetup control error severity levels, data
logging, and model display options. If you want to view the complete set of
model parameters affected by hdlsetup, open hdlsetup.m in the MATLAB
Editor.

The model parameter settings provided by hdlsetup are intended as useful
defaults, but they may not be optimal for your application. For example,
hdlsetup sets a default Simulation stop time of 10 s. A total simulation
time of 1000 s would be more realistic for a test of the sfir_fixed example
model. If you would like to change the simulation time, enter the desired
value into the Simulation stop time field of the Simulink Editor.

See the “Model Parameters” table in the “Model and Block Parameters”
section of the Simulink documentation for a summary of model parameters.

Selecting and Checking a Subsystem for HDL Compatibility
The coder generates code from either the current model or from a subsystem at
the root level of the current model. You use the Generate HDL for menu to
select the model or subsystem from which code is to be generated. Each entry
in the menu shows the full path to the model or one of its subcomponents.

The sfir_fixed model is configured with the sfir_fixed/symmetric_fir
subsystem selected for code generation. If this is not the case, make sure that
the symmetric_fir subsystem is selected for code generation, as follows:

1 Select sfir_fixed/symmetric_fir from the Generate HDL for menu.

2 Click Apply.

To check HDL compatibility for the subsystem:

1 Click the Run Compatibility Checker button.

2 The HDL compatibility checker examines the system selected in the
Generate HDL for menu for compatibility problems. In this case, the

2-36

HDL Code Generation from a Simulink® Model

selected subsystem is fully HDL-compatible, and the compatibility checker
displays the following message:

Starting HDL Check.
HDL Check Complete with 0 errors, warnings and messages.

The compatibility checker also displays a report in a new window.

Generating VHDL Code
The top-level HDL Code options are now set as follows:

• The Generate HDL for field specifies the sfir_fixed/symmetric_fir
subsystem for code generation.

• The Language field specifies (by default) generation of VHDL code.

• The Folder field specifies a target folder that stores generated code files
and scripts. The default target folder is a subfolder of your working folder,
named hdlsrc.

2-37

2 Tutorials

Before generating code, select Current Folder from the Desktop menu in
the MATLAB window. This displays the Current Folder browser, which lets
you access your working folder and the files that will be generated within it.

To generate code:

1 Click the Generate button.

2 As code generation proceeds, the coder displays progress messages. The
process should complete with the message

2-38

HDL Code Generation from a Simulink® Model

HDL Code Generation Complete.

Observe that the names of generated files in the progress messages
are hyperlinked. After code generation completes, you can click these
hyperlinks to view the files in the MATLAB Editor.

The coder compiles the model before generating code. Depending on model
display options (such as port data types, etc.), the appearance of the model
may change after code generation.

3 A folder icon for the hdlsrc folder is now visible in the Current Folder
browser. To view generated code and script files, double-click the hdlsrc
folder icon.

4 The files that were generated in the hdlsrc folder are:

• symmetric_fir.vhd: VHDL code. This file contains an entity definition
and RTL architecture implementing the symmetric_fir filter.

• symmetric_fir_compile.do: Mentor Graphics ModelSim compilation
script (vcom command) to compile the generated VHDL code.

• symmetric_fir_synplify.tcl: Synplify synthesis script.

• symmetric_fir_map.txt: Mapping file. This report file maps generated
entities (or modules) to the subsystems that generated them (see “Trace
Code Using the Mapping File”).

5 To view the generated VHDL code in the MATLAB Editor, double-click the
symmetric_fir.vhd file icon in the Current Folder browser.

6 Before proceeding to the next section, close files you have opened in the
editor. Then, click the Go Up One Level button in the Current Folder
browser, to set the current folder back to your sl_hdlcoder_work folder.

Generating VHDL Test Bench Code
At this point, the Generate HDL for, Language, and Folder fields are
set as they were in the previous section. Accordingly, you can now generate
VHDL test bench code to drive the VHDL code generated previously for the
sfir_fixed/symmetric_fir subsystem. The code will be written to the same
target folder as before.

2-39

2 Tutorials

To generate a VHDL test bench:

1 Select the HDL Code > Test Bench pane.

2 Select HDL test bench.

3 Click the Generate Test Bench button.

2-40

HDL Code Generation from a Simulink® Model

4 As test bench generation proceeds, the coder displays progress messages.
The process should complete with the message

HDL TestBench Generation Complete.

5 The generated files in the hdlsrc folder are:

• symmetric_fir_tb.vhd: VHDL test bench code, with generated test
and output data.

• symmetric_fir_tb_compile.do: Mentor Graphics ModelSim
compilation script (vcom commands). This script compiles and loads
the entity to be tested (symmetric_fir.vhd) and the test bench code
(symmetric_fir_tb.vhd).

• symmetric_fir_tb_sim.do: Mentor Graphics ModelSim script to
initialize the simulator, set up wave window signal displays, and run a
simulation.

Verifying Generated Code
You can now take the generated code and test bench to an HDL simulator for
simulated execution and verification of results. See “Simulating and Verifying
Generated HDL Code” on page 2-41 for an example of how to use generated
test bench and script files with the Mentor Graphics ModelSim simulator.

Generating Verilog Model and Test Bench Code
The procedure for generating Verilog code is the same as for generating VHDL
code (see “Generating a VHDL Entity from a Subsystem” on page 2-24 and
“Generating VHDL Test Bench Code” on page 2-26), except that you select
Verilog from the Language field of the HDL Code options.

Simulating and Verifying Generated HDL Code

Note This section requires the use of the Mentor Graphics ModelSim
simulator.

This section assumes that you have generated code from the sfir_fixed
model as described in either of the following exercises:

2-41

2 Tutorials

• “Generating HDL Code Using the Command Line Interface” on page 2-22

• “Generating HDL Code Using the GUI” on page 2-30

In this section you compile and run a simulation of the previous generated
model and test bench code. The scripts generated by the coder let you do this
with just a few simple commands. The procedure is the same, whether you
generated code in the command line environment or in the GUI.

To run the simulation:

1 Start the Mentor Graphics ModelSim software.

2 Set the working folder to the folder in which you previously generated code.

ModelSim>cd C:/work/sl_hdlcoder_work/hdlsrc

3 Use the generated compilation script to compile and load the generated
model and text bench code. The following listing shows the command
and responses.

ModelSim>do symmetric_fir_tb_compile.do

Model Technology ModelSim SE vcom 6.0 Compiler 2004.08 Aug 19 2004

-- Loading package standard

-- Loading package std_logic_1164

-- Loading package numeric_std

-- Compiling entity symmetric_fir

-- Compiling architecture rtl of symmetric_fir

Model Technology ModelSim SE vcom 6.0 Compiler 2004.08 Aug 19 2004

-- Loading package standard

-- Loading package std_logic_1164

-- Loading package numeric_std

-- Compiling package symmetric_fir_tb_pkg

-- Compiling package body symmetric_fir_tb_pkg

-- Loading package symmetric_fir_tb_pkg

-- Loading package symmetric_fir_tb_pkg

-- Compiling entity symmetric_fir_tb

-- Compiling architecture rtl of symmetric_fir_tb

-- Loading entity symmetric_fir

2-42

HDL Code Generation from a Simulink® Model

4 Use the generated simulation script to execute the simulation. The
following listing shows the command and responses. The warning messages
are benign.

ModelSim>do symmetric_fir_tb_sim.do

vsim work.symmetric_fir_tb

Loading C:\Applications\ModelTech_6_0\win32/../std.standard

Loading C:\Applications\ModelTech_6_0\win32/../ieee.std_logic_1164(body)

Loading C:\Applications\ModelTech_6_0\win32/../ieee.numeric_std(body)

Loading work.symmetric_fir_tb_pkg(body)

Loading work.symmetric_fir_tb(rtl)

Loading work.symmetric_fir(rtl)

** Warning: NUMERIC_STD."<": metavalue detected, returning FALSE

Time: 0 ns Iteration: 0 Instance: /symmetric_fir_tb

.

.

.

** Warning: NUMERIC_STD.TO_INTEGER: metavalue detected, returning 0

Time: 0 ns Iteration: 1 Instance: /symmetric_fir_tb

** Note: **************TEST COMPLETED **************

Time: 140 ns Iteration: 1 Instance: /symmetric_fir_tb

The test bench termination message indicates that the simulation has run
to completion without comparison errors.

** Note: **************TEST COMPLETED **************

5 The simulation script displays inputs and outputs in the model (including
the reference signals y_out_ref and delayed_x_out_ref) in the Mentor
Graphics ModelSim wave window. The following figure shows the signals
displayed in the wave window.

2-43

2 Tutorials

6 Exit the Mentor Graphics ModelSim simulator when you finish viewing
signals.

7 Close files you have opened in the MATLAB Editor. Then, click the Go
Up One Level button in the Current Folder browser, to set the current
folder back to your work folder.

2-44

A

Examples

Use this list to find examples in the documentation.

A Examples

Generating HDL Code Using the Command Line Interface
“Creating a Folder and Local Model File” on page 2-22
“Initializing Model Parameters with hdlsetup” on page 2-23
“Generating a VHDL Entity from a Subsystem” on page 2-24
“Generating VHDL Test Bench Code” on page 2-26
“Verifying Generated Code” on page 2-28

A-2

Generating HDL Code Using the GUI

Generating HDL Code Using the GUI
“Creating a Folder and Local Model File” on page 2-32
“Viewing Coder Options in the Configuration Parameters Dialog Box” on
page 2-33
“Initializing Model Parameters with hdlsetup” on page 2-34
“Selecting and Checking a Subsystem for HDL Compatibility” on page 2-36
“Generating VHDL Code” on page 2-37
“Generating VHDL Test Bench Code” on page 2-39
“Verifying Generated Code” on page 2-41

A-3

A Examples

Verifying Generated HDL Code in an HDL Simulator
“Simulating and Verifying Generated HDL Code” on page 2-41

A-4

Index

IndexA
About HDL Coder 1-1
Altera 1-5

C
checkhdl 2-18
Commands

hdlsetuptoolpath 1-6

F
Fixed-point conversion 2-9
Floating-point to fixed-point conversion 2-9

G
Getting started

HDL code generation
From MATLAB 2-2
From Simulink 2-18

H
HDL code generation

command line 2-22
GUI 2-30
Workflows 2-19

HDL language support
Verilog 1-4
VHDL 1-4

hdllib 2-18
hdlsetup 2-19
hdlsetuptoolpath 1-6

I
Installation 1-3

S
Set up

C/C++ compiler 1-4
Checking synthesis tool setup 2-5
Project setup 2-6
Synthesis tools 1-5

Simulating 2-41
Software requirements

For examples 1-8
For FPGA-in-the-Loop 1-5
For USRP Device 1-5

Speedgoat 1-5
Synthesis

FPGA 1-5
Third-party tools and devices 1-5
Tool setup 1-5

Synthesis tools
Checking synthesis tool setup 2-5

T
Tool support

Altera 1-5
C/C++ compiler 1-4
Synthesis tools 1-5
Xilinx 1-5

Tutorials
HDL code generation from MATLAB

code 2-2
HDL code generation from Simulink 2-18

V
Verifying 2-41
Verilog 1-4
VHDL 1-4

W
Workflow Advisor

Index-1

Index

MATLAB to HDL workflow 2-15 X
Xilinx 1-5

Index-2

	toc
	Getting Started with HDL Coder
	Product Description
	Key Features

	Installation
	Toolbox Setup
	VHDL and Verilog Language Support
	Setting Up the C/C++ Compiler
	Supported Third-Party Synthesis Tools
	Setting Up the Synthesis Tool Path
	Synthesis Tool Setup for the MATLAB to HDL Workflow

	Xilinx System Generator Setup
	Required Libraries
	Specify Path to Required Libraries

	Xilinx FPGA Target-Specific Floating Point Library Setup
	Software Requirements for Examples

	Tutorials
	HDL Code Generation from a MATLAB Algorithm
	About the Algorithm in This Example
	mlhdlc_sfir Function Code
	mlhdlc_sfir_tb.m Test Bench

	Copying Files Locally
	Setting Up Your C Compiler
	Checking Your Synthesis Tool Setup
	Testing the Original MATLAB Algorithm
	Setting Up an HDL Coder Project
	Creating Fixed-Point Versions of the Algorithm and Test Bench
	Generating HDL Code

	HDL Code Generation from a Simulink Model
	Before You Generate Code
	Overview of Exercises
	The sfir_fixed Model
	Generating HDL Code Using the Command Line Interface
	Overview
	Creating a Folder and Local Model File
	Initializing Model Parameters with hdlsetup
	Generating a VHDL Entity from a Subsystem
	Generating VHDL Test Bench Code
	Verifying Generated Code
	Generating a Verilog Module and Test Bench

	Generating HDL Code Using the GUI
	HDL Coder GUI Overview
	Creating a Folder and Local Model File
	Viewing Coder Options in the Configuration Parameters Dialog Box
	Initializing Model Parameters with hdlsetup
	Selecting and Checking a Subsystem for HDL Compatibility
	Generating VHDL Code
	Generating VHDL Test Bench Code
	Verifying Generated Code
	Generating Verilog Model and Test Bench Code

	Simulating and Verifying Generated HDL Code

	Examples
	Generating HDL Code Using the Command Line Interface
	Generating HDL Code Using the GUI
	Verifying Generated HDL Code in an HDL Simulator

	Index

